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ABSTRACT

We study the problem of determining for which integrable functions
G: R — (0,00) the operator f — %G(y.) * f(z), which maps functions
on the real line into functions defined on the upper half-plane R2+, is of
weak type (1,1). Here, R?*_ is endowed with the measure ydzdy. The
conditions we will impose are related to the distribution of the mass of G.

One of the motivations for this study comes from the problem of deciding
whether there is a weak type (1,1) inequality for the “rough” modification
of the standard maximal function, obtained by inserting in the mean values
a factor {2 which depends only on the angle. Here, Q > 0 is any integrable
function on the sphere. Our estimates for the first-mentioned probiem
allow us to answer in the affirmative, the second one in dimension two,
when we restrict the operator to radial functions. Some extensions to

higher dimensions in the context of both problems are also discussed.
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1. Introduction and statements of results

The purpose of this work is to study the behaviour of certain “averaging”
operators which naturally arise as integral operators from functions defined, say,
in R into functions defined in the half-space R2+ endowed with an appropriate
measure. To be more precise, given an integrable function G, we will describe

sufficient conditions on G to ensure the boundedness of the linear operator
1
f- 50(3/-) x f(z),

from L!(R) into L1'*°(R2, ydzdy).

These questions came from the following problem. Does the modification of
the Hardy-Littlewood maximal operator by means of a “rough”, homogeneous
function satisfy a weak-type (1,1) estimate, under the sole condition that the
rough function be integrable when restricted to the unit sphere? We will prove
that this estimate holds in two dimensions when the operator is applied to radial
functions only, by reducing this problem to the boundedness of certain integral
operators like the one mentioned above.

We begin by stating the following particular result, which represents a basic
tool in the development of our study:

THEOREM 1: Let h be a positive, even function in L'(R) which is decreasing on
(0,00). Then the operator

Tf(z.y) = éh(y.) « f(z)

is bounded from L'(R) into L“*(RZ2,ydzdy), with a constant which only
depends on ||h||;.

Next, we will replace h by a more general function called . This G will
still verify a weak smoothness condition expressed in terms of the distribution
of its masses and the distance to the origin. The conclusion is similar to that of

Theorem 1.

THEOREM 2: Given € > 0 and a sequence of real numbers {ax}>,, € !, we
define

G(z) = G(z) = }: %I XJ)e(x)
k=—00
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where Jy. denotes the interval ((1+¢€)™*, (1+¢€)!~*]. Then, the operator T defined
on functions f € LY(R) by

Tf(r,y) = Tf(z.9) = ic(y» « f(2)

satisfies the weak type estimate

u({(zy) € RE: TS 9)] > AD) < ( )y w) 1£115, A >0,

k=—00
where dp = ydzdy and C. = O((log 1)?) as € — 0.

As an application of these results, we consider a maximal operator in R™
associated with a positive function 2, homogeneous of degree 0 and integrable
on S™~!. Define

Maf(@) =swprso o [ QG- v)ldy
™ Jiyl<r

To determine whether or not Mg is bounded from L!'(R") into L1>°(R") has
become an important open problem in harmonic analysis. In 1975, R. Fefferman
[F] proved this result under the stronger condition that Q be of “finite entropy”,
and this was extended by F. Soria in {So} to the case in which Q is in the (larger)
block space B.

Later on, M. Christ [Ch] proved the result for n = 2 under the condition
Q € L9(S'), ¢ > 1. This was then improved by M. Christ and J.L. Rubio de
Francia [Ch-R] to arbitrary n and Q € Llog L{S"71).

It is worth pointing out that any function of finite entropy belongs to L log L,
whereas B, has the property that the smallest rearrangement invariant space
B of functions which contains it, also contains L loglog L. Moreover, the only
Orlicz space which contains B, and is contained in L!, is L! (see [So]).

Other recent results regarding the boundedness of Mg are due to S. Hofmann
[Ho|, who obtains weighted inequalities for power weights, and to S. Hudson [Hu],
who gives a proof for the case 2 € L!(S') and 2 decreasing.

Let, for w € ™1,

Mof(@) = subrsa [ 1762 - )l
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be the one-dimensional Hardy-Littlewood maximal operator along the direction
w. To estimate Mgq in terms of M,,, we write the integral in the definition of
Mgqf in polar coordinates and interchange the order of the supremum and the
angular integration. It easily follows that Mq is dominated by the operator Mg
defined by

Maf(z) = / Q)Mo f (z)do.

Sn—1

Here and in the sequel, dw denotes the area measure of S"~1.

There is no weak type (1,1) estimate for M in general. This is a consequence
of an example due to R. Fefferman [F], p. 176. With Q = 1, he proves that Mg
is not of weak type (1,1).

We now restrict ourselves to the case in which f is a radial function. The
situation in this case obviously becomes much simpler, since the geometry of
radial functions is easier to handle. Observe, however, that Mqf and M f are
not radial even though f is. It is no surprise that in two dimensions Mq turns
out to be of weak type (1,1) when restricted to radial functions. What is maybe
a little surprising is that the same holds for Mg f, as follows.

THEOREM 3: There exists an absolute constant C such that for any 0 with
/ Qw)dw = 1,
Sl
and any radial function f € L'(R?), one has
. 1
[{z € R*: Mg f(z) > A} < Cx”f”l, A>0.

In a forthcoming paper, the authors extend this theorem to R™, n > 2, and
prove an analogous result for rough singular integral operators.

The paper is organized as follows. We present in Section 2 the proofs of
Theorems 1 and 2. Section 3 is devoted to the proof of Theorem 3. Finally,
Section 4 contains some additional extensions of these results and some open
questions related to the subject.

By C, we shall denote various constants.
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2. Proofs of Theorems 1 and 2

Proof of Theorem 1: By a limiting argument, we may assume, without loss of

generality, that h has compact support and then, by dilation invariance, that its

support lies within some small interval, say [——é, % .

We may also assume that f is positive and that & has the form

h= Zaksz(_g—k—-3,2—k—3), ar > 0,
k>0

so that ||} ~ >, ak.
Define for a fixed A > 0 and each y > 0

Ax(y) = l{z € R: ih(yo s fz)> A},

where |E| denotes the Lebesgue measure of the set E C R. Writing dy = ydxdy,

we have

u{(z.y) € RE: Tf(z.4) > A} = / " A (w)dy.

Observe that the fact that h is even and decreasing on (0,00) implies that
the function A)(y) decreases as y increases. Hence, the above integral can be
controlled by the sum

A2

JEZ

Obviously, it will suffice to show that for a given jy € Z,

o C
Z AN(2)2% < X”hHleHl’

j2io

with constant C independent of jp.

Let us introduce the intervals
I=(27%27%+1)], LieZ

The conditional expectation of a function g € L}, at level [ is defined as

Eg(z)=) (l_flz_l /1 i g(U)du) xr; ().

i€Z
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Now, for any s € R, we have

xq2-UHE)=3

277h(27 ) x f(z) =27% Zamﬂ' / f(u)du

e c—2-(i+k)-3
etpagn-GHR-3
=27 ZakZHJ / f(u — 8)du.
k>0 r4s—2—(+k)-3
We will need the following simple result, which will be proved later.
CraM: For each x € R, k > 0, and j > jo, one of the two intervals I, =
(x — 270+R)=3 ¢ 4 2-(G+K)=3) and I', = 2790 /3 + I, lies entirely within some

; i
interval I} ;..

It follows easily from the claim and the above inequalities that

) . . . 9—Jo
Tf(x,ZJ) < 2_2.7 ZakEj+kf($)+2_zJ ZakEj.Hcf (1“*" ) s
3
k>0 k>0
where f(u) = f(u— 2—3“ ). Obviously, f depends on jo, but || f||; does not. Thus,
the problem is equivalent to showing the existence of a universal constant C such
that for all jo € Z, A > 0,

—2; R o=
1) Y HreR: Y 2¥aBf(z) > A2 < 3 3 el
iZjo k>0 ]
Roughly speaking, the idea of the proof is as follows. For each j, Chebyshev’s
inequality implies

2 il
(2) [{e: Y 27%axEjxf(z) > A}2¥ < Xzakﬂfﬂl-
k>0 0
To be able to sum in j, we must show that this inequality can be improved for
most j. Indeed, we shall see that in order to reach level A, the sums

Z 2_2jakEj+kf,

k>0
occurring in (2), must “use” different parts of f for different j. This would
amount to decomposing f as f = ) f; and verifying (2) with, in the right-hand
side, the L! norm of f;. Then, one could sum in j. In fact, our argument is
slightly more complicated. We choose one decomposition of j for each value of
k, i.e., for each part of h, as follows:
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LEMMA A: There exists a double sequence of positive functions {f; x}x>0,j>
such that

(3) Z fix < f, foreachk >0,
32
and
(@ | |
{z€R: Z 27 Y Bk f(x) > A} C{z € R: 22“2’akEj+kfj,k(z) > A/2}.
k>0 k>0

Assuming the validity of Lemma A, we observe that, by Chebyshev’s inequality,
the left-hand side of (1) is majorized by

%j}z; ;akr"’f ( /R Ej 4k fj,k(z)dx) 9%
Z /Rfj,k(f”)dx < ; <Zak) (/ f(a:)dx) ,
k

2
= X Z ak
k Jj2jo

so that (1) follows.
The proof of Lemma A is by induction and relies on the following:

LEMMA B: Given a > 0 and a sequence of positive measurable functions
{Fn}a>n, on R, we can find another sequence of functions {Gyr}n>n,, With
0 < G, < F, for n > ng, and such that

(5) > EnG.=min(a, Y  E.Fy,).

Proof: We shall prove something slightly stronger than (5), namely,

n n—1
(6) E.G, = min (a, Z EmFm> - Z E.G,, n>ng.

m=ng m=ng

Let us start with a trivial observation: If I is an interval, F is a positive
function on I, and we choose 0 < 3 < T}T J ; F, then there exists 0 < G < F such

that .
— | G=4.
n)

This allows us immediately to find some 0 < G,,, < F,, satisfying the relation

EnyGry = min(a, E, Fy,).
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Now, suppose that we have inductively constructed functions G,,,...,G;-;
with 0 < G,, < F,, satisfying (6) for each np < n <I—1. To find G,, notice that
the case n = I — 1 of {6) implies that the expression in the right-hand side of (6)
for n = [ is nonnegative and dominated by E;F;. Since the same expression is also
constant on each interval | ,i, the above observation applies again and produces
the desired G;. This completes the induction process and, hence, the proof of
Lemma B. |

Proof of Lemma A: We first apply Lemma B with o = A/2, ng = jo, and
Fjo4x =27 %0a,f, k=0,1,2,.... This gives functions f;, x < f such that

Y Ejorr(270ar fio k) = min [ A/2,> " Ejox(27%0akf)
k>0 k>0

Assume that we have found {fix}x>0, | = jo:jo+1,...,5—1 with Y77 fix <
f, for each k, and

-1
Y B2 Marfin) = min | 3/2,) " Ee(@ Y an[f = D fik]) | -

k>0 k>0 i=jo

for each | < j — 1. Now, we apply Lemma B again, with a = A/2, ng = j, and

j-1
Fijp =2"%q, f_Zfl,k , k=0,1,2,....
!

=Jo

This produces functions f; x, k > 0, such that

j—1
(M Fik <F=Y " fun k20,

l=jo
and

Y Eser(2arfix)

k>0
(8) j-1
=min | A/2,Y Ejmx(2¥arf) = Y Ejrr(2¥ar Y fi)
k>0 k>0 I=jo
By induction in j, we thus obtain a double sequence f;«, j > jo,k > O.
Conclusion (3) of Lemma A follows directly from (7). To verify (4), we first
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observe the simple inequality E;g < 2/~!E;g for I < j and any g > 0. This allows

us to estimate the last term in (8); indeed

j-1 j-1
Z Ejk | 27%ay Z fie ] £ 22—2jak Z Y Erykfir

k>0 I=jo k>0 I=jo
Jj—1
—j —al
= E 277 22 arEikfie < A/2,
=70 k>0

the last inequality because of (8). Now, (4) is immediate from this and (8).
Lemma A is proved. |

For the conclusion of Theorem 1, it only remains to give a

Proof of the Claim: Set T = j + k. Assume I, intersects both I*~! and I! for
some i € Z. Let [ be the (unique) integer such that

9—Jjo

277 <
3

<(l+1)27".

We make here the important (and trivial) observation that since 31 < 27770 <
3(1+1) and 7 — jo € N by hypothesis, we must have either 277 = 3/ + 1 or
2730 = 3] 4+ 2. In both cases, we obtain

1 279 2
I+-]277< < )27
(+3> <3 _<l+3)2

It is now easy to see that I’, C I+, |

Proof of Theorem 2: 'We can assume, with no loss of generality, that 1+¢ = 22"

7

for some v € {1,2,3,...}. Note that the mean value theorem implies
(9) 2717 <2 1< 27,

We decompose G as

2ty oty

1
G(z) = Z Z akﬁXJk_—' Z G(z),
k=0

x=0 k=l21+"u+n,lEZ

say.
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From the Stein-N.Weiss adding-up lemma (see [S-NW]), it follows that we need
only show that each operator

T f(z,y) = %Gn(y.) x f(x), k=0,...,2"" 1,

is bounded from L}(R) into L1:*(R2,dp), with a constant at most Cv||Gl|1,
where C is a universal constant. Observe that

221/!

(1+6)7"Ge((1+€)7") Za121+vu+x
I€Z

X(2724,(14€)2- 21

and so, because of dilation invariance, we need only consider the case k = 0.
Given X > 0, let us define as before

Ax(y) = {z € R: [Tof(z,y)| > A}l

Then,

221/(]-{-1) 22(1

2”‘ V‘2 d_é
/0 Ax(y)ydy = 2/2 y)ydy = /1 Zj:AA(Z 7€)2h¢ E

Thus, it suffices to show that there exists a universal constant C such that for
every € € [1,22"] one has

. . C
3 4x@2*9)27€* < S GollslIf -
J

By rescaling, we may assume that { = 1.
For convenience, we change notation slightly. Write

G=> aldlxu
4

where now J; = (272%,2277272%!] and we write a; instead of a14.,. What we
must show is that

. . . C

(10) Y HzeR:[2729G(22) x f(2)] > AH2® < T 3 lal £,
J l

with C independent of v € N, f € L*(R), and the sequence {ax} € ['. We may

obviously assume that f > 0 and ax > 0 for each k: In this proof, we set

I} = (127v @D (5 4 1)2~+(k+D] - ke Z.
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Define, for a given N € N, the conditional expectation at level k£ “displaced
by N” as

E)ivg(l') ( It N‘ / g(u ) Xl,: (I) = Egg(x - NZ—V(2k+1))‘
i€Z

We notice that (9) implies that if z € I}, then  — Ji C Ui;:;, I, Hence,

2~2VjG(22"5 ) x) =9 i Zal XJH»J f(x)

2941

< Z 2_4”JZG(EH_]

N=2¥

We fix N € {2¥,2” + 1}. In order to prove (10), it suffices to show that for
each lp, jo € Z

1) Yz R Y2 B i@) > M < S S allih,
Jj2Jjo I>1p 1
with constant C independent of jg, {o.

The idea of the proof is to reduce the problem to the case in which G is a
decreasing function on (0, c0), and then apply Theorem 1. We start by defining
the operator EY f(z), for = € I, as E} f(z) provided both I{ and Ii™" are
subsets of the same I,c 1» and E,’:"f(ar) = 0 otherwise.

LeEMMA C: With the notation above, there exists for every ko € Z a bijection
m: R — R, preserving Lebesgue measure, and such that for k > ko,

(12) E} f(z) < Bi(f or")(x(z)).

With kg = lp + jo, this lemma implies for 7 > jo that

Z 2Bl f(z)

1>

< Z 2_4”jalEll+j(f o )((z))

1>l
s 1 _
< ZQ 4 Mt[mX(o,Zﬂv(fﬁ)—vﬂ] *(for™))(n(2))
1>l
=[2G (2% + (foxV))(w(2)),
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where

* 1
G*(z)=2 Z almx(o,z—h/l-u-{'l].
1>

Hence, if we set A3(y) = |{z: ;G*(y.) * (fom™)(x) > A}, the left-hand side
of (11), with E} replaced by EY, is majorized by

) Az(22)2t,

j2jo

Since A}(y) is decreasing in y, this sum is at most

o0
. 1 .. -~
¢ [~ Aty = Cul{(@.) € B: 26"(0)+ (For™)(@) > AD).
Because of Theorem 1, this is dominated by

1, .. ~ 1
CIG I NIf or Iy < C3 (3 ) liflh.
i

Observe that the constants C here are independent of m and, therefore, of jo and
lo.

This takes care of that part of the left-hand side in (11) corresponding to
intervals I and I ,’;’N in the same [, ,{_1. The remaining part can be reduced to
this by a shift argument similar to the one used in the proof of Theorem 1 (see
the claim). This, together with the proof of Lemma C, given below, finishes the
proof of Theorem 2. |

Proof of Lemma C: We shall construct 7 so that each image #(If) is some I},
for all k > ko. Inequality (12) will follow if we can show that whenever I} and
I };‘N , k > ko, are in the same Ii_l, they are mapped onto adjacent intervals in
the same order; i.e., with the previous notation, 7/ = (i — N)’+ 1. We shall define
7 as an infinite composition product « = 22 i ¥k of commuting bijections ¥;.
Each I} is contained in some I]_,, and ¥4 will map I} by translation onto some
I,‘;” contained in the same I£_1~ In particular, ¥ will map each I,‘;, onto itself
for k' < k and will move each I} rigidly. Fix k > ko. It is easy to find a ¥ of
this type such that (12) holds with 7 replaced by 1. Indeed, we need only find
an appropriate permutation of those I} contained in each I ,’;_1, for instance as
follows: The set of these I} has a unique partition into maximal subsets of the
type
(I, [N [42N L pdeNy
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It is enough to take a permutation which sends the elements of each such subset
onto consecutive intervals in the same order.

The same permutation is used in each [ ,{_1. This gives a map 1 satisfying
(12); indeed, equality holds in (12) at “most points”. It is easily seen that the
commute. The infinite product 7 = Iy, exists because (Yr, 0 ...0Yn(T))n>k,
is a Cauchy sequence for each x. Further, 7 is bijective since it has an inverse,
which turns out to be of the same type. Considering intervals I}, one can see
that w preserves Lebesgue measure.

Finally, we claim that =, like 4, satisfies (12). When we compose ) with
those ¥x with k' > k, then the effect is that points are moved within each I,i.
The mean values appearing in (12) are, thus, not changed. Those ¥, with ¥’ < k
move each Ii_l rigidly to some other position, and so (12) is seen to hold for .

The lemma is proved. |

3. Boundedness of rough operators

Proof of Theorem 3: Although n = 2 in this theorem, we write part of the proof
for a general n.

Given w € S™! and a radial function f € L', the behaviour of M, f can be
described in terms of the action of simple operators on the radial projection, fo,
of f, ie, f(x) = fo(|z]). Define one-sided maximal operators on the positive
half-line by

1 r+h
Mog(r) =swpnso [ lo(Oldt
M. analogously, and
. 1 ("
Mg(r) = swpocnerray [ Lottt
Let A(z,w) € [0,7] denote the angle between z and w, and set €,(x) =
sin A(z,w). Observe that €,(z) = €,(z'), with 2’ = z/|z|] € S™!. From
[C-H-S], we know that for x € R™

wa(x) < CM—’fO(lzD’

when A(z,w) > 7/2. When A(r,w) < 7/2, we notice that the point on the
line {x — tw: t € R} which is closest to the origin corresponds to t = L,(z) =
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|z|(1 — €,(z)?)'/2. Introduce the operator

L, (x)
Aug(z) = L#(x) /0 o(j — tw))dt

1 =] ¢
2l - eu(@)?)2 /Wm) 9 E = Telea @i
It now follows from [C-H-S] that for A(z,w) < 7/2
M, f(z) < C(M_ fo(lz]) + M— fo(|2|) + Au fo(z)).

One easily sees that M. is bounded from L!(r*~'dr) into LL*°(r*~ldr),
dividing the half-line into dyadic subintervals. Also, W(r) = r"~! satisfies
M_W < W (in fact M_W = W.) But then W is an A; weight for M_,,
as proved by Martin-Reyes, Ortega and de la Torre [MOT, Theorem 1]. Hence,
we need only show that the operator

Angla) = | ) Aug(z)de
(x,w)<7/2
maps L'(r"~'dr) into LV °(R").
Let us split the above integral into two pieces, |, , and f2, according to whether

A(z,w) < wf/dorm/4 < A(z,w) < 7/2, respectively. The boundedness properties
of the second part are rather good, since one has a strong type estimate. Indeed,

||/Q(w)Awgdw .
i {t) ne1
/S,, 1d:v/ /Q 1—6w (1 — e, (z)2) /2 /réw(x,) (tz_(’;:w(tjt))z)l/zr dr
< ot 00 [ a0 [/ - (t‘—_Td))_/] “
0 n—2 _ '
<C - 1dar:/ eij’))1/2/ g(t)t [ew(tz’)] (1 :J((_j)))lhdt

= [/SH ld:zc /Q(w :f‘)’ ] [/Ooog(t)t"“ldt] SC/Ooog(t)t"_ldt.

The last estimate follows since ¢, (z') > sinn/4 here.

For the integrand in [; we have

Lu(z) = |2(1 ~ e (2)})!/2 ~ J2|.
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From now on, we assume n = 2. Write ¢ and w in polar coordinates as
z =re?, w=¢" with 8, ¢ € (-, 7] and set Q(¢) = Q(e*?), by a slight abuse
of notation. Then,

1 [ $1/2
foomsmsse [owar [ o0 ramg=apm

Here, the integral in ¢ is taken over those ¢ of distance at most 7 /4 from 8. This

distance is to be taken along the unit circle, but to solve our problem, we may

use instead the distance of the real line. Set

oo t1/2

What we then need to show is that
/ Q)2 G(rsin(d — 6)) dg € L1>([=2, 27] x (0, 00), rdfdr),
|p—6|<m/4 r
with quasi-norm bounded by C||g||z1(rar)- Let us make the observation that
1., . 1 .
—T-G(rsmu) - ;G(ru) € L ((—w/4,7/4) x (0, 00), rdudr).

In fact,
m/4 poo 1
/ / [= G(rsmu)— —G(ru)lrdrdu
/4

1
)t/ dt
t)t1/2| 1 ! dt| drd
(t—rsinu)i/2 (¢ —ru)1/2l T

1r/4 12 t/sinu 1
=2 t)t —_——d
/0 /0 9(t) /:/u (t — rsinu)l/2 4
/u

t
+/ | ! - ! |dr
o (t—ruw)/2  (t—rsinu)l/2

oo n/4 o 1/2
= 4/ g(t)tdt/ [2(L_S_“f_“)_ L1z ———]d
0 ()}

] dtdu

ul/2ginu u sinu

n/4
= Ollgllzrar) / V(w)du,
0
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and we notice that the quantity V(u) thus defined is bounded in (0, 7/4).
The proof is now reduced to showing that

/ Q(qﬁ)lG(r((ﬁ —0))do € LV*°([-2m, 27] x (0, 00), rdfdr),
[—01<m /4 T

with a bound for the quasi-norm depending only on ||g{|z1(rar). This will be a
consequence of the inequality

(13) |26+ 10| < Cllgllzgren 1l -

Ll.(R2 ,rddr)

To prove (13), we shall apply the results of the previous section. Notice first
that we can decompose G as

[ul(1+27") £1/2 £1/2
G{u) = / g(t)———dt+/ g(t)———dt
) ; i1 (8= ul)/? aul (= [u])17?
% ol/2 [ul(14271)

chm

where h(u fl 1 9(t)dt, and

g(t)tdt + /1 g(t)dt = 022 26y (u) + h(u),

Ju 1=0

1 lul(14+27)

Gulu) = g(t)edt

27 u| Sy

(1+2-—I)2 k
< / g(t)tdt) 2(1+ 27 x(2-1)-+, (142-1y1-4p (Jul)-
keZ (142-4)—*

Observe that h is even and decreasing in (0, co) and that ||h||L1(r) = 2||g]IL1(rar)-

Also,
(142772
S [ stedt] =gl
kEz (1+2_l)*“

Therefore, we obtain from Theorem 2 the estimate

|>6ir)+ 566)| < €1+ 12lgll g2 grary 1112 e,

L1 (R2 rdddr)

Theorem 1 gives a similar estimate for 1A(r.)  f. Now, inequality (13) follows
from an application of the adding-up lemma of Stein and N. Weiss. ]
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4. Further remarks and some open questions

If one tries to prove the boundedness of M on radial functions in higher
dimensions, there are two main obstacles one has to overcome. First, to ex-
tend Theorems 1 and 2 to functions in L!(R™) and, second, to bypass the lack
of group structure in 8™, n > 1. The group structure of S! was essential for the
case treated. The extension of Theorem 1 is described in the following result:

THEOREM 4: Let h be a positive, radial and radially decreasing function in
LYR"). For f € L}Y(R"), z € R™, y > 0, we define T f(z,y) = ih(y.) * f(x).
Then, T is a bounded operator from L*(R") into L»* (R}, y"dzdy), with a
constant depending only on |{|hl|;.

Proof: The main steps of the proof of this theorem are similar to those given in
the proof of the case n = 1. We sketch some of the modifications needed here.
First, we can assume that h is of the form

h= Z?knakX(_Q—k-SJ—k—a]n, ar > 0.
k>0

Next, we define for [ € Z, ¢ € Z™ the cubes Q! = 27!i+(0,27!]*. The conditional

expectation at level {, in R™, is

1
Eg= Z (@/g> XQi-
iGZn i Q;

Finally, an iteration of the claim in Section 2 shows that for j > j,

hoi * f(z) < Z ZakEk+jfT (IC + 2_3J0 7') ,

T€{0,1}" k>0

where f.(u) = f(u— 2_;0 7). The rest is easy. We leave the details to the interested
reader.

Extensions of Theorems 2 and 3 to higher dimensions will be considered in a
forthcoming paper.

In the case n = 1, Theorem 1 and, consequently, Theorem 2, admit some
generalizations of a different kind. Let us consider, for a € R and h even,
positive, and decreasing on (0, 0o}, the operator

Hof(z,y) = y%,(yh(y.) « f(2)).
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The problem consists in describing the values of o for which we have the weak
type estimate

(14) | e € RelEs@ ) > A= L < Al S

Theorem 1 answers the question for a = 2, and a quick look at its proof shows
that the case a > 1 follows from the same techniques.

Via the transformation y~! = ¢, (14) is related to earlier work [Sj1] and [Sj2]
by the first author. Theorem 1 of [Sj2]| implies (14) for @ < 0, under the ad-
ditional assumption that [ h(z)|log|z|ldr < oo. Recently, T. Menarguez and
the second author have weakened in [M-S] this integrability condition on A to
[ h(z)|log|log|z||| < oo. Counterexamples to (14) in the case 0 < a < 1 are
given in [Sjl, pp. 229 and 248]. We do not know whether (14) holds for a < 0
and general h.

It would be interesting to know whether in Theorem 2 one can take C.

independent of e. This is equivalent to the inequality

|z6w)+ 1@, < ClGI

L= (p

with no restriction on the integrable functions G and f. As before, du = ydxdy

in R2+. There is a counterexample to the stronger inequality

" Ha: 279G(2) » £(2) > IAH2Y < C3IGILIfll, A0,
J

Indeed, let N be a large natural number. As G we choose the characteristic

function of the set
22N

k2", k2N + 1.
k=1
We let f be the measure f = 272N Dickeoen Ok TR = 29,1 < j < N, then
G(R.) is the characteristic function of
22N
|J (k2V=7, k2N =7 4 27,
k=1

In the set

BN -j

U kk+279),

k=23N—-j—-1
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one finds that R~!G(R.) » f ~ 2~N. Thus,

N N
D W 279G )« f(z) > J27N/CY2¥ > ) 23NTMH C > NN,

j=1

j=1

As N — oo, this is much larger than 2V||G||, || f]]1 = 2%V.
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