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ABSTRACT 

We s t u d y  the  p rob lem of de te rmin ing  for which integrable  func t ions  

G: l:t --* (0, oo) the  opera tor  f ---* ~G(y.) * .f(x), which m a p s  funct ions  

on the  real line into funct ions  defined on the  upper  half-plane l:t~_, is of 

weak type  (1,1). Here, R~. is endowed wi th  the  measu re  ydxdy. T h e  

condi t ions  we will impose  are related to the  d is t r ibut ion  of the  mass  of  G 

One  of the  mot iva t ions  for this  s t udy  comes from the  problem of deciding 

whe the r  there  is a weak type  (1,1) inequali ty for the  "rough" modif icat ion 

of the  s t a nda rd  m a x i m a l  funct ion,  ob ta ined  by inser t ing in the  m e a n  values 

a factor f~ which depends  only on the  angle. Here, f / >  0 is any  integrable  

funct ion  on the  sphere.  Our  e s t ima tes  for the  f i r s t -ment ioned  p rob lem 

allow us  to answer  in the  affirmative,  the  second one in d imens ion  two~ 

when  we restr ic t  the  opera tor  to radial  funct ions.  Some ex tens ions  to 

higher  d imens ions  in the  context  of bo t h  problems are also discussed.  

* Both authors were partially supported by DGICYT PB90/187. 
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1. I n t r o d u c t i o n  and  s t a t e m e n t s  of  resu l t s  

The purpose of this work is to study the behaviour of certain "averaging" 

operators which naturally arise as integral operators from functions defined, say, 

in l=t into functions defined in the half-space R~  endowed with an appropriate 

measure. To be more precise, given an integrable function G, we will describe 

sufficient conditions on G to ensure the boundedness of the linear operator 

f 1G(v.)  �9 f (x ) ,  
y 

from LI(R) into Ll'~176 ydxdy). 

These questions came from the following problem. Does the modification of 

the Hardy-Litt lewood maximal operator by means of a "rough", homogeneous 

function satisfy a weak-type (1,1) estimate, under the sole condition that  the 

rough function be integrable when restricted to the unit sphere? We will prove 

that  this estimate holds in two dimensions when the operator is applied to radial 

functions only, by reducing this problem to the boundedness of certain integral 

operators like the one mentioned above. 

We begin by stating the following particular result, which represents a basic 

tool in the development of our study: 

THEOREM 1: Let h be a positive, even function in LI(R)  which is decreasing on 

(0, cr Then the operator 

T f ( x ,  y) = ~h(y.) * f ( x )  

is bounded from LI(R)  into Ll'~176 with a constant which only 

depends on []hill. 

Next, we will replace h by a more general function called G. This G will 

still verify a weak smoothness condition expressed in terms of the distribution 

of its masses and the distance to the origin. The conclusion is similar to that of 

Theorem 1. 

THEOREM 2: Given e > 0 and a sequence of real numbers {ak}_~oo E l 1, we 

define 
oo 1 

c ( x )  = = 
k = - o o  



Vol. 95, 1996 WEAK TYPE (1,1) ESTIMATES FOR SOME INTEGRAL OPERATORS 213 

where Jk denotes the interval ((1 + e)-k, (1 + e) l-k]. Then, the operator T defined 

on functions f E LI(R)  by 

Ty(x ,  ~) = T'y(x, y) = ~G(y.) �9 y(x) 

satisfies the weak type estimate 

#({(x,y)  e R~.: [Tf(x,y)[ > A}) < -~- lakl [I/[lx, A > 0, 
k = - o o  

where d# = ydxdy and C, = O((log !)2) as e --~ 0. 

As an application of these results, we consider a maximal operator in R n 

associated with a positive function ~2, homogeneous of degree 0 and integrablc 

on S n-1. Define 

Mar(x )  = sups> 0 ~ I<~ a(Y) l f (x  - Y)IdY" 

To determine whether or not Mo is bounded from LI (R  n) into LI,~ has 

become an important open problem in harmonic analysis. In 1975, R. Fefferman 

[F] proved this result under the stronger condition that ft be of "finite entropy", 

and this was extended by F. Sofia in [So] to the case in which f~ is in the (larger) 

block space Boo. 

Later on, M. Christ [Ch] proved the result for n = 2 under the condition 

fl E Lq(S1), q > 1. This was then improved by M. Christ and J.L. Rubio de 

Francia [Ch-R] to arbitrary n and f~ C L l o g L ( S ' - l ) .  

It is worth pointing out that  any function of finite entropy belongs to L log L, 

whereas Boo has the property that the smallest rearrangement invariant space 

B of functions which contains it, also contains L log log L. Moreover, the only 

Orlicz space which contains B, and is contained in L 1, is L 1 (see [So]). 

Other recent results regarding the boundedness of M~ are due to S. Hofmann 

[Ho], who obtains weighted inequalities for power weights, and to S. Hudson [Hu], 

who gives a proof for the case ~2 E L I ( s  l) and f/decreasing. 

Let, for w E S '~-1, 

fo T 1 If(x t~)ldt M~f (x )  = sup~>o r 
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be the one-dimensional Hardy-Litt lewood maximal operator along the direction 

w. To estimate M~ in terms of M~, we write the integral in the definition of 

M f J  in polar coordinates and interchange the order of the supremum and the 

angular integration. It easily follows that Mf~ is dominated by the operator M~ 

defined by 

M~f(x) = [ ~(w)M~,f(x)d~. 
Js n - i  

Here and in the sequel, dw denotes the area measure of S '~-1. 

There is no weak type (1,1) estimate for M~ in general. This is a consequence 

of an example due to R. Fefferman IF], p. 176. With f~ = 1, he proves that M~ 

is not of weak type (1,1). 

We now restrict ourselves to the case in which f is a radial function. The 

situation in this case obviously becomes much simpler, since the geometry of 

radial functions is easier to handle. Observe, however, that M~f and M~f are 

not radial even though f is. It is no surprise that in two dimensions Mn turns 

out to be of weak type (1,1) when restricted to radial functions. What is maybe 

a little surprising is that the same holds for M~f, as follows. 

THEOREM 3: There exists an absolute constant C such that for any fl with 

f s  12(~)dw = 1 ,  
1 

and any radial function f E LI(R2),  one has 

I{x e R2: M~f(x) > A}I < c~-Ilfllx, ~ > 0. 

In a forthcoming paper, the authors extend this theorem to R n, n > 2, and 

prove an analogous result for rough singular integral operators. 

The paper is organized as follows. We present in Section 2 the proofs of 

Theorems 1 and 2. Section 3 is devoted to the proof of Theorem 3. Finally, 

Section 4 contains some additional extensions of these results and some open 

questions related to the subject. 

By C, we shall denote various constants. 



Vol. 95, 1996 WEAK TYPE (1,1) ESTIMATES FOR SOME INTEGRAL OPERATORS 215 

2. P r o o f s  o f  T h e o r e m s  1 and  2 

Proof of Theorem i: By a limiting argument, we may assume, without loss of 

generality, that h has compact support and then, by dilation invariance, that its 

support lies within some small interval, say [--~, ~]. 

We may also assume that f is positive and that h has the form 

k h = y ~  ak2 X(--2-~-3,2-~-3), ak __ 0, 
k>0 

so that tlh[ll ~ ~ k  ak. 

Define for a fixed A > 0 and each y > 0 

A~(y) = l{x �9 R: 1-hiy.)* f ( x )  > A}I, 
Y 

where IEI denotes the Lebesgue measure of the set E C R. Writing d# = ydxdy, 

we have /2 #{(x,y)  �9 R~_: T f ( x , y )  > .~} = A:~(y)ydy. 

Observe that  the fact that h is even and decreasing on (0, c~) implies that 

the function Ax(y) decreases as y increases. Hence, the above integral can be 

controlled by the sum 

 A (2J)2 
jEZ 

Obviously, it will suffice to show that for a given J0 �9 Z, 

A~(2J) 22j < CI]h[llllf[ll ,  

J_>Jo 

with constant C independent of Jo. 

Let us introduce the intervals 

= (2-% 2-'( i  + 1)J, l, i e z .  

The conditional expectation of a function 9 E L~o ~ at level l is defined as 
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Now, for any s E R, we have 

.x+2-(J+,~)-3 

2-Jh(2J.) * f ( x )  =- 2 -2j ~_, ak ,  f (u )du  
--2-(i+~)-3 k>0 

,~k+j / x+s+2-(j+k)-3 
= 2 - ~  ~ . .  a k .  f ( ~  - s )du .  

k>O Jx+s--2-CJ+/r 

We will need the following simple result, which will be proved later. 

CLAIM: For each x E R, k > 0, and j > J0, one of the two intervals Iz = 

(x - 2-(J+k)-3,x A- 2 -(j+k)-3) and I'~ = 2-J~ + Ix lies entirely within some 

interval I~+ k. 

It follows easily from the claim and the above inequalities that 

Tf (x ,2J )  < 2 - 2 J E a k E j + k f ( x ) +  2 - 2 J E a k E j + k  ] x +  
k>o k>_o 

2-J~ ) where ](u) = f ( u -  ~ . Obviously, ] depends on j0, but ]l]llz does not. Thus, 

the problem is equivalent to showing the existence of a universal constant C such 

that for all j0 E Z, A > 0, 

(I) ~ I{xE R: E 2 - 2 J a ' E j + J ( x )  > A}I22J < ~ ~-~a,][f[],. 
J_>Jo k>0 0 

Roughly speaking, the idea of the proof is as follows. For each j ,  Chebyshev's 

inequality implies 

OO 

(2) ]{x: E 2 - 2 J a k E j + k f ( x ) >  A}t22j _< X 
k>0 0 

To be able to sum in j ,  we must show that this inequality can be improved for 

most j .  Indeed, we shall see that  in order to reach level A, the sums 

2-2JakEj+kf, 
k>O 

occurring in (2), must "use" different parts of f for different j .  This would 

amount to decomposing f as f = ~ f j  and verifying (2) with, in the right-hand 

side, the L: norm of fj .  Then, one could sum in j .  In fact, our argument is 

slightly more complicated. We choose one decomposition of j for each value of 

k, i.e., for each part of h, as follows: 
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There exists a double sequence of positive functions {fj,k }k>_O,j>jo LEMMA A: 

such that 

(3) E fJ,k <_ f ,  for eachk >_O, 
J>Jo 

and 

(4) 

{x e n :  Z 2-2JakEj+kf(x)  > A} C {x �9 R: E 2-2JakEj+kfi,  k(x) >- A/2}. 
k>O k>_O 

Assuming the validity of Lemma A, we observe that, by Chebyshev's inequality, 

the left-hand side of (1) is majorized by 

-~ ~ Z a~2-~J Ej+kJj,~(x)dx 2 2j 
J >_Jo k 

' JR )(i ) = ~ Z a ,  ~ fj,,(x)dx < ~ a, S(x)dx , 
k j>_Jo 

so that (1) follows. 

The proof of Lemma A is by induction and relies on the following: 

LEMMA B: Given a > 0 and a sequence of positive measurable functions 

{F,~},~>no on R,  we can find another sequence of functions {Gn},,>_,~o, with 

0 <_ G~ < Fn for n >_ no, and such that 

(5) 

Proo~ 

E~G~ = m i n ( a ,  E E~F,~). 
t ' l  r l  

We shall prove something slightly stronger than (5), namely, 

(6) E,~G,~ = min a, EmF,~ - E,~G,~, n >_ no. 

Let us start with a .trivial observation: If I is an interval, F is a positive 

function on I, and we choose 0 _< j3 <_ ~-[ f I  F, then there exists 0 < G <_ F such 

that if II-] a=,~. 
This allows us immediately to find some 0 < G~ o _< F,~ o satisfying the relation 

E,~ o G,~ o = min(a, Eno F,~o). 
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Now, suppose that  we have inductively constructed functions Gno . . . .  ,Gl-1  

with 0 < Gn < F , ,  satisfying (6) for each no < n < l - 1. To find Gt, notice that  

the case n = l - 1 of (6) implies that  the expression in the right-hand side of (6) 

for n = I is nonnegative and dominated by ElFt. Since the same expression is also 

constant on each interval I~, the above observation applies again and produces 

the desired Gt. This completes the induction process and, hence, the proof of 

Lemma B. | 

Proof of  Lemma A: We first apply Lemma B with a = A/2, no = Jo, and 

Fjo+k = 2-2Joakf, k = O, 1, 2 . . . . .  This gives functions fjo,k <- f such tha t  

E Ejo+k(2 akfjo,k) = min 
k_>0 k_>0 

j -1  
Assume that  we have found {fl,k }k>0, l = jo, jo + 1 , . . . ,  j -- 1 with ~l=jo ft,k <__ 

f ,  for each k, and 

( ) Z El+k(2-2takf~,k) = min ,V2, Z El+k(2-2tak[f -- fi,k]) , 
k>o \ k_>o i=jo 

for each I < j - 1. Now, we apply Lemma B again, with a = A/2, no = j ,  and 

f j+k=2-Vak I- I ,k , k=0,  l ,2 , . . . .  
l=jo 

This produces functions fj,k, k >_ 0, such that  

j -1  
(7) < k>0,  

l=jo 

and 

k_>o 

= man ~/2, E E j + k ( 2 - 2 j a k f )  - Z EJ+k(2-2Jak E fi,k) �9 
\ k>o k>o ~=Jo / 

By induction in j ,  we thus obtain a double sequence fj,k, j >_ jo, k >_ 0. 

Conclusion (3) of Lemma A follows directly from (7). To verify (4), we first 
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observe the simple inequality Ejg < 2J-tEtg for I < j and any g >_ 0. This allows 

us to estimate the last term in (8); indeed 

j-1 ) 

k>O l=jo 

j - 1  

k>O l=jo 

j--1 

= 2'-J 2 < 
l=jo k>_O 

the last inequality because of (8). Now, (4) is immediate from this and (8). 

Lemma A is proved. I 

For the conclusion of Theorem 1, it only remains to give a 

Proof of the Claim: Set v = j  + k. Assume I ,  intersects both Ir - l  and 1r for 

some i E Z. Let l be the (unique) integer such that 

2-J~ 
12 - r  < ~ < (l + 1 )2 - ' .  

We make here the important (and trivial) observation that since 31 < 2 ~-j~ 

3(l + 1) and ~- - j0 E N by hypothesis, we must have either 2 r - j~  = 31 + 1 or 

2 ~-j~ = 31 + 2. In both cases, we obtain 

( l + 1 )  2-~-<2-J----~~ < ( l + ~ ) -  3 - -.-. 

It is now easy to see that I~z C /-t+/ I A T  �9 

Proofo[ Theorem 2: We can assume, with no loss of generality, that  1 +e = 22-~ , 

for some v E {1, 2, 3 , . . .  }. Note that the mean value theorem implies 

(9) 2 - 1 - v  < 2 2-~ --  1 < 2-" .  

We decompose G as 

21+~v-1  21+vv_1 

c( l= E E akEW. = Z 

say. 
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From the Stein-N.Weiss adding-up lemma (see [S-NW]), it follows that we need 

only show that each operator 

T,,f(x,y)= ~G,~(y.)* f(x), ~=0 .... , 2 1 + " v - 1 ,  

is bounded from Lt (R)  into Lt,~ d#), with a constant at most Cu]]G,~][1, 
where C is a universal constant. Observe that 

22vl 
(1 + e)-~G~((1 + e)-'~.) = Ea121+~,+,,---~-)(.(:-2.i,(l+~)2-2v,l, 

IEZ 

and so, because of dilation invariance, we need only consider the case ~ = 0. 

Given A > 0, let us define as before 

A)~(y) = I{x �9 R: ITof(x,y)l > A}]. 

Then, 

3 J1 

Thus, it suffices to show that there exists a universal constant C such that for 

every ( �9 [1, 22~] one has 

< Clla011,11Sll,. 
J 

By rescaling, we may assume that f = 1. 

For convenience, we change notat ion slightly. Write 

a = a l l J l l - l x j , ,  
l 

where now Jz = (2 -2~1, 22-~2-2~1] and we write at instead of a121+.~. What we 

must show is that 

C 
(10) E I{x �9 R: 12-2vJG(22"J.) * f(x)l > A}I24vj _< -~ E ]a'l Ilflll, 

j t 

with C independent o f ,  e N, f �9 LI(R),  and the sequence (ak} �9 l 1. We may 

obviously assume that f > 0 and ak >__ 0 for each k. In this proof, we set 

I~ = (i2 -v(2k+D,(i + 1)2-~(2k+D], k, i  �9 Z. 
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Define, for a given N E N, the conditional expectation at level k "displaced 

by N" as 

iez ~-~' g(u)du XI~(x) = E ~  N2-"(2k+1)). 

i f2~+1 Iik -N .  Hence, We notice that (9) implies that if x �9 I~, then x - Jk C kgg=2. 

1 
2-~"JG(2~"J.) �9 f(x) = 2 -~"~ ~_a,~ ,--~-~.,,+, �9 f(~) 

l 
I ~  

2~+1 

<- ~ 2-4"J Z a,E~J(x). 
N=2"  l 

We fix N �9 {2", 2 ~ + 1). In order to prove (10), it suffices to show that for 

each/o, jo �9 Z 

(11) ~ I(x �9 R: Z 2-'~Ja'e,~J(x) > ~}I2'"~ < C 
j)_jo l)lo l 

with constant C independent of jo, 10. 

The idea of the proof is to reduce the problem to the case in which G is a 

decreasing function on (0, c~), and then apply Theorem 1. We start by defining 

the operator JEN f (x ) ,  for x �9 I~, as ENk f ( x )  provided both I~ and Iik -N are 

J E N f ( x )  0 otherwise. subsets of the same Ik_l,  and = 

LEMMA C: With the notation above, there exists for every ko ~ Z a bijection 

zr: R ---* R ,  preserving Lebesgue measure, and such that for k _> ko, 

(~2) Eff f(x) ~ E~(f orc-1)(~r(x)). 

With k0 = 10 + j0, this lemma implies for j _> jo that 

E 2-4UJalJ~tN+J f ( x )  
l>lo 

l>_lo 
1 

< ~ 2-4"~a,[2_.2-2.(~+j/~(o,2-2~.+.-.+~1 �9 (/o~-~)1(~(~)) 
l>lo 

= [2-~-Ja*(2~-J.), (f o ~-~)](~(z)), 
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where 
1 

a* (x) = 2 ~ at 2_~T_.+ ~ X~o,2-~.'-.+q. 
l>lo 

Hence, if we set A*~(y) = I{x: !G'(y.)  �9 (foTr-1)(x) > A}] the left-hand side y 

of (11), with E g replaced by /~N, is majorized by 

j>_Jo 

Since A*~(y) is decreasing in y, this sum is at most 

C A*~(y)ydy = C#({(x,y) �9 R2: G ' (y . )*  (foTr-1)(x) > a}). 

Because of Theorem 1, this is dominated by 

cNIIa*lllllfo~r-llll _< c (y'~a,)Ilflll. 
I 

Observe that the constants C here are independent of 7r and, therefore, of J0 and 

10. 

This takes care of that part of the left-hand side in (11) corresponding to 

intervals I~ and I~ - s  in the same I~_ r The remaining part can be reduced to 

this by a shift argument similar to the one used in the proof of Theorem 1 (see 

the claim). This, together with the proof of Lemma C, given below, finishes the 

proof of Theorem 2. | 

Proof of Lemma C: We shall construct 7r so that each image lr(I~) is some I~', 

for all k _> ko. Inequality (12) will follow if we can show that whenever I~ and 

I~ -N, k >_ ko, are in the same IJ_p  they are mapped onto adjacent intervals in 

the same order; i.e., with the previous notation, i' = (i - N) '  + 1. We shall define 

lr as an infinite composition product 7r = H~=~0r of commuting bijections ~Pk- 

Each I~ is contained in some I~_1, and Ck will map I~ by translation onto some 
i" J I k contained in the same Ik_ 1. In particular, ~k will map each I~, onto itself 

for k' < k and will move each I~ rigidly. Fix k _> k0. It is easy to find a Ck of 

this type such that (12) holds with Ir replaced by r Indeed, we need only find 

an appropriate permutation of those I~ contained in each I~_1, for instance as 

follows: The set of these I~ has a unique partition into maximal subsets of the 

type 
z;:+-' . . . .  , g + , N } .  
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It is enough to take a permutat ion which sends the elements of each such subset 

onto consecutive intervals in the same order. 

The same permutat ion is used in each I~_ 1. This gives a map ~k satisfying 

(12); indeed, equality holds in (12) at "most points". It  is easily seen that  the Ck 

commute. The infinite product ~ = HCk exists because (r o . . .  o~(x))~>ko 

is a Cauchy sequence for each x. Further, 7r is bijective since it has an inverse, 

which turns out to be of the same type. Considering intervals I~, one can see 

that  ~r preserves Lebesgue measure. 

Finally, we claim that  ~, like Ck, satisfies (12). When we compose ~bk with 

those ~k, with k' > k, then the effect is that  points are moved within each I~. 

The mean values appearing in (12) are, thus, not changed. Those Ck, with k'  < k 

move each I~_ 1 rigidly to some other position, and so (12) is seen to hold for 7r. 

The lemma is proved. | 

3. B o u n d e d n e s s  of  r o u g h  o p e r a t o r s  

Proofo[  Theorem 3: Although n = 2 in this theorem, we write part  of the proof 

for a general n. 

Given w C S n - I  and a radial function f E L 1, the behaviour of M ~ f  can be 

described in terms of the action of simple operators on the radial projection, fo, 

of f ,  i.e., f ( x )  = f0([x[). Define one-sided maximal operators on the positive 

half-line by 
1 / r + h  

M_g(r )  = suph>0 ~ ,T ig(t)[dt' 

M _  analogously, and 

jfT r 
1 Ig(t)ldt. M,_g(r) = supo<n<~/2 ~ -h  

Let A(x,w)  E [0,~] denote the angle between x and w, and set e~(x) = 

sinA(x,w).  Observe that  ~ ( x )  = e~(x'), with x '  = x / Ix  I e S n-1. From 

[C-H-S], we know that  for x E R n 

M~f (x )  < CM_fo(]x l )  , 

when A(x,w)  >_ 1r/2. When A(x,w)  _< ~r/2, we notice that  the point on the 

line {x - tw: t E R} which is closest to the origin corresponds to t = L~(x) = 
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Ixl(1 - e~(x)2) 1/2. Introduce the operator 

1 f0 Lw(x) A~g(x) - L~(x) g(Ix - ta~l)dt 

1 fl, Ixl t = g(t) 
Ixl(1 - ~,(~)2)1/~ ,~l~w(~) (t~ - (Ixl~(x))~)l/2dr" 

It now follows from [C-H-S] that for A(x, w) < 7r/2 

Muf(x) <_ C(M-jo(Ixl) + M~-f0(lxl) + Aufo(x)). 

One easily sees that A)/_ is bounded from Ll(rn-ldr) into Ll'~(rn-ldr),  

dividing the half-line into dyadic subintervals. Also, W(r) = r '~-1 satisfies 

M _ W  < W (in fact M _ W  = W.) But then W is an A1 weight for M~,  

as proved by Martin-Reyes, Ortega and de la Torre [MOT, Theorem 1]. Hence, 

we need only show that the operator 

A~g(x) = f fl(w)A~g(z)dw 
JA (~,~)<~/2 

maps Ll(rn-ldr) into LI'~(R,'~). 

Let us split the above integral into two pieces, -]'1 and f~, according to whether 

A(x, w) _< 7r/4 or 7r/4 < A(x, w) _< r:/2, respectively. The boundedness properties 

of the second part are rather good, since one has a strong type estimate. Indeed, 

2 f~(w)A~gdw LI(R n) 

fS fO~176 dad fr r g(t)tdt n-1 = ,-1 dx' f~(W)r(1 _ e~(x,)~)Xl 2 ,w(~') (t 2 _ (re,~(x,))2)ll2r dr 

da) t 1/2 t/,~(z ) r n-2 dr 
<_ 

ft(w)(1 e~(z')2) 1/2 (t r ,~(z ' ) )  1/2 r * - - I  - -  

dw ~ g(t)t [ t - - - -~l  n - 2  ( 1 -  ,w(xt)) 112 
<Cjs,,-ldx'j2*(w)(1-'w(x'))l/2/[ -u  [ea~(X')J - e w ' ~  

dt 

dw oo 
: [~--ldxlf2~'~(~ [fO g(t)tn-ldt] ~ Cfo g(t) tn-ldt" 

The last estimate follows since e,,(x ~) > sinTr/4 here. 

For the integrand in fl  we have 

dt 

L~(x) = I x l ( 1 -  ~,,,(x)~) ~/: '~ Ixl. 
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From now on, we assume n = 2. Write x and w in polar coordinates as 

x = re w, w = e iv, with 0, r E (-rr ,  7r] and set fl(r = f/(eiO), by a slight abuse 

of notation. Then, 

~ f~(w)A~g(x)d~ <- C ~ fl(r162 Ll~in(+_o)lg(t) 
t t l2 

(t - r I sin(r - 0)I)~/2 dt. 

Here, the integral in r is taken over those r of distance at most 7r/4 from 0. This 

distance is to be taken along the unit circle, but to solve our problem, we may 

use instead the distance of the real line. Set 

~ o  t112 
a(u) = g(t)( t 1 - l u t )  ll2dt" 

What we then need to show is that 

~r ~(r162 L1'~([-27r,27r] • (O,~),rdOdr), 
-01<_~/4 

with quasi-norm bounded by C llgllL,(,ar). Let us make the observation that 

~G(rsinu)- !C(ru) C L1((-Tr/4, Tc/4) • (0, cx~),rdudr). 

In fact, 

//ff4L~~ 

f~/4 L~176 [L~ rsinu),/:dt < 2 g(t)til 2 1 
- -  JO sinu ( t  -- 

L~g(t)tll2i(t 1 :u)ll2idt] + u - rsinu) 1/2 - ( t -  drdu 

/-/4 Lo~ [ft/sin~ rsinu) ll2dr = 2 g(t)t W2 1 
J o  LJtl~ ( t  - 

1 1 ] 
+ J 0  [ ( t -  ru)ll 2 ( t -  rsinu)ll2]dr dtdu 

Loo f~r /4  2(u - sinu)W2 1 
= 4  (t)tdt]o [ + 

i 
~14 

: CI Ig l lL i ( rdr  ) V ( u ) d u ,  
JO 
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and we notice that  the quantity V(u) thus defined is bounded in (0, 7r/4). 

The proof is now reduced to showing that  

, a ( ~ ) ! C ( r ( ~ -  o ) ) e ,  e L ' ,~ ( [ -2 . - ,  2~ -] • (o, ~), ,-~oe,-),  
- 0 l <_ - / 4  

with a bound for the quasi-norm depending only o n  ligllL'(rdr)" This will be a 

consequence of the inequality 

( ,3)  {{!Cir.)* f(O)I,.,.~(,~,.,o,.)<_ Cl{g{IL'(.,~)ll.fll~,(R). 

To prove (13), we shall apply the results of the previous section. Notice first 

that we can decompose G as 

C(u) = )g(t) (t - lu])'/2dr + g(t) (t dt 
' ,~l - l u l )  ~/2 

< C g(t)tdt + g(t)dt = C E 2-1~2at (u) + h(u), 
/=0  a /=0  

O0 

where h(u) = fill g(t)dt, and 

1 f1.1(1+2-') g(t)tdt 

< ~ g(t)tdt 2l(1 +2-1)kX((1+2-,)-~ (1+2-~)l-q(]U]). 
kEZ 

Observe that  h is even and decreasing in ( 0, e~) and that  I}h}]LI(R) = 2]]g]iv(~d~l. 
Also, 

[ f('+=-')=-'g(t)tdt] = 211gllL,(.d.). 
ke~z LJ(l+2-~) -~ 

Therefore, we obtain from Theorem 2 the estimate 

Theorem 1 gives a similar estimate for ~h(r.) * f .  Now, inequality (13) follows 

from an application of the adding-up lemma of Stein and N. Weiss. | 
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4. F u r t h e r  r e m a r k s  a n d  s o m e  o p e n  q u e s t i o n s  

If one tries to prove the boundedness of M~ on radial functions in higher 

dimensions, there are two main obstacles one has to overcome. First, to ex- 

tend Theorems 1 and 2 to functions in L I ( R  ~) and, second, to bypass the lack 

of group structure in S n, n > 1. The group structure of S 1 was essential for the 

case treated. The extension of Theorem 1 is described in the following result: 

THEOREM 4: Let h be a positive, radial and radially decreasing function in 

LI(R'~). For f �9 LI(Rn) ,  x �9 R ~, y > 0, we define T f ( x , y )  = ~h(y.) �9 f ( x ) .  

Then, T is a bounded operator from L I ( R  '~) into LI,~(R_~ +1, y'~dxdy), with a 

constant depending only on []hl[1. 

Proof." The main steps of the proof of this theorem are similar to those given in 

the proof of the case n = 1. We sketch some of the modifications needed here. 

First, we can assume that  h is of the form 

h = Z2knakx(_2-~-3 ,2-k-3] . ,  ak ~_ O. 
k>O 

Next, we define for I �9 Z, i �9 Z n the cubes Q~ = 2- i i  + (0, 2-1] '~. The conditional 

expectation at level l, in R2,  is 

(1/o) E , g  = 

Finally, an iteration of the claim in Section 2 shows that  for j > J0 

2-J~ 
h2J �9 :(x) ___ Z )--:- akEk+jS  x + 

~'E{0,1}" k>0 

where f~-(u) = f ( u - 2 - ~ ~  The rest is easy. We leave the details to the interested 

reader. 

Extensions of Theorems 2 and 3 to higher dimensions will be considered in a 

forthcoming paper. 

In the case n = 1, Theorem 1 and, consequently, Theorem 2, admit  some 

generalizations of a different kind. Let us consider, for ~ E R and h even, 

positive, and decreasing on (0, ~ ) ,  the operator 

H,. f (x ,  y) = ~-j(yh(y.) �9 f ( x ) ) .  
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The problem consists in describing the values of a for which we have the weak 

type estimate 

/0 (14) I{x e R: IH, f(x,y)l > A}ly ~ _< Ilhlll Ilflll- 

Theorem 1 answers the question for a = 2, and a quick look at its proof shows 

that  the case a > 1 follows from the same techniques. 

Via the transformation y-1 = t, (14) is related to earlier work [Sjl] and [Sj2] 

by the first author. Theorem 1 of [Sj2] implies (14) for a < 0, under the ad- 

ditional assumption that  f h(x)l log Ixlldx < o0. Recently, T. Menarguez and 

the second author have weakened in [M-S] this integrability condition on h to 

fh(x)lloglloglxlll < o0. Counterexamples to (14) in the case 0 _< a <_ 1 are 

given in [Sjl, pp. 229 and 248]. We do not know whether (14) holds for a < 0 

and general h. 

It would be interesting to know whether in Theorem 2 one can take C~ 

independent of e. This is equivalent to the inequality 

1G(Y.) * f ( x )  i L"~c(P) --<: cIIall~ Ilfll~, 

with no restriction on the integrable functions G and f .  As before, d# = ydxdy 
in R 2. There is a counterexample to the stronger inequality 

I{x: 2-Jc(2J.) ,  f(x) > J~X}122j < C~-IlClll Ilfll~, A > 0. 
J 

Indeed, let N be a large natural  number. As G we choose the characteristic 

function of the set 
22N 

U [k2N, k2 ~ + I]. 
k=l 

2 -2N ~ 6k. If R = 2J, 1 < j < N, then We let f be the measure f = /_,1<k<22N _ _ 

G(R.) is the characteristic function of 

2 2N 

U [k2N-J' k2N-J + 2-5]" 
k----1 

In the set 
23N--J 

U [k,k + 2-q, 
k--2sN-j-1 
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one finds that  R-1G(R . )  �9 f ,,~ 2 -N.  Thus, 

N N 
Z I{x: 2 - J G ( 2 J ' ) *  f ( x )  > J 2 - N / c } [ 2 2 j  > Z 2 3 N - 2 J 2 2 J / C  > N23N. 
j=l j=l 

As N ~ c~, this is much larger than  2~r I[f[[1 = 23N. 
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